4,862 research outputs found

    Compensation for phase distortions in nonlinear media by phase conjugation

    Get PDF
    We demonstrate theoretically that the distortion-correction property of phase-conjugate beams propagating in reverse through aberrating media is also operative when the indices of refraction of the media depend on the intensity. A necessary condition is that the phase-conjugate mirror that generates the reflected beam possess a unity (magnitude) "reflection" coefficient

    Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing

    Get PDF
    A number of new optical effects that result from degenerate four-wave mixing in transparent optical media are proposed and analyzed. The applications are relevant to time-reversed (phase-conjugated) propagation as well as to a new mode of parametric oscillation

    Compensation for channel dispersion by nonlinear optical phase conjugation

    Get PDF
    It is proposed that the process of nonlinear optical phase conjugation can be utilized to compensate for channel dispersion and hence to correct for temporal pulse broadening. Specifically, a four-wave nonlinear interaction is shown to achieve pulse renarrowing. Spectral bandwidth constraints of the input pulse are presented for typical phase-conjugate interaction parameters

    Observation of amplified phase-conjugate reflection and optical parametric oscillation by degenerate four-wave mixing in a transparent medium

    Get PDF
    We report on the observation of amplified reflection and optical parametric oscillation via degenerate four-wave mixing in a nonresonant medium. The process is mediated through the third-order nonlinear susceptibility in a transparent liquid medium, CS2. A collinear mixing geometry is utilized to obtain long interaction lengths and polarization discrimination is used to separate the pump and signal fields

    Development of the ARIES parachute system

    Get PDF
    The design and testing of a two-stage parachute system to recover a space telescope weighing up to 2000 pounds is described. The system consists of a 15-ft dia ribbon parachute reefed to 50% for 10 seconds and a 73-ft dia paraform or cross second stage reefed to 10% for 10 seconds. The results of eight drop tests and one operational rocket launched flight and recovery are presented. A successful operational recovery of a 1600-lb NASA space telescope was conducted. The payload was launched by a second stage Minuteman rocket to an altitude of about 300 miles above sea level

    Coulomb Ordering in Anderson-Localized Electron Systems

    Full text link
    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We have established that with the electron density going to zero the Coulomb interaction brings the arrangement of the Anderson localized electrons closer and closer to an ideal (Wigner) crystal lattice, provided the temperature is sufficiently low and the dimension of the system is > 1. The ordering occurs despite the fact that a random spread of the energy levels of the localized one-electron states, exceeding the mean Coulomb energy per electron, renders it impossible the electrons to be self-localized due to their mutual Coulomb repulsion This differs principally the Coulomb ordered Anderson localized electron system (COALES) from Wigner crystal, Wigner glass, and any other ordered electron or hole system that results from the Coulomb self-localization of electrons/holes. The residual disorder inherent to COALES is found to bring about a multi-valley ground-state degeneration akin to that in spin glass. With the electron density increasing, COALES is revealed to turn into Wigner glass or a glassy state of a Fermi-glass type depending on the width of the random spread of the electron levels.Comment: 4 pages, LaTeX 2.09, To appear in Phys.Rev B Rapid Communications, The abstract and the Introduction have been written anew to stress a principal difference between a new macroscopical state predicted in the paper and Wigner crystal or Wigner glass, some notations have been change

    Spatial convolution and correlation of optical fields via degenerate four-wave mixing

    Get PDF
    A nonlinear optical technique is described that performs, essentially instantaneously, the functions of spatial correlation and convolution of spatially encoded waves. These real-time operations are accomplished by mixing spatially dependent optical fields in the Fourier-transform plane of a lens system. The use of a degenerate four-wave mixing scheme eliminates (in the Fresnel approximation) phase-matching restrictions and (optical) frequency-scaling factors. Spatial bandwidth-gain considerations and numerical examples, as well as applications to nonlinear microscopy, are presented

    Image phase compensation and real-time holography by four-wave mixing in optical fibers

    Get PDF
    It is proposed that real-time holography can be performed inside multimode fibers (or optical waveguides) using four-wave optical mixing. Of particular interest is the generation of complex-conjugate replicas of input fields for image transmission and compensation of propagation distortion. A theoretical analysis and a numerical estimate are presented

    A theoretical and experimental investigation of the modes of optical resonators with phase-conjugate mirrors

    Get PDF
    We present an analysis of resonator properties for a cavity bounded by a phase conjugate mirror, which is generated by a degenerate four-wave nonlinear optical interaction. Using a ray matrix formalism to describe the conjugate mirror, resonator stability conditions are derived. Longitudinal and transverse mode characteristics are discussed. Results are compared with an experiment where laser oscillation was observed at 6943 Å using carbon disulfide as the nonlinear interacting medium comprising the phase conjugate mirror
    corecore